An essential function of sphingolipids in yeast cell division.

نویسندگان

  • Sharon Epstein
  • Guillaume A Castillon
  • Yongmei Qin
  • Howard Riezman
چکیده

Ceramides are bioactive lipids and precursors to sphingolipids. They have been shown to take part in a wide variety of different physiological processes in eukaryotic organisms and are thought to be toxic at high concentrations. Ceramide is synthesized by condensation of the sphingoid base sphinganine and a fatty acyl CoA by ceramide synthases, a family of enzymes that differ in their specificity for the length of the acyl CoA substrate. We have engineered a yeast strain where the endogenous ceramide synthase has been replaced by one of the putative enzymes from cotton. As a result, the yeast strain produces C18 rather than C26 ceramides showing that the cotton protein is a bona fide ceramide synthase with specificity towards C18 acyl CoA. Strikingly, the accumulation of C18 ceramide is not toxic in Saccharomyces cerevisiae. This allows survival of the yeast after deletion of the normally essential AUR1 (inositol phosphorylceramide synthase) gene permitting us to address the essential roles of sphingolipids. Deletion of AUR1 allows cell growth, but leads to a defect in cytokinesis, which takes twice as long as in wild-type strains. Nuclear division and recruitment of septins is apparently not affected, but cytokinesis is delayed and cell separation is incomplete.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast.

The proton-pumping H+-ATPase, Pma1p, is an abundant and very long lived polytopic protein of the yeast plasma membrane. Pma1p constitutes a major cargo of the secretory pathway and thus serves as a model to study plasma membrane biogenesis. Pma1p associates with detergent-resistant membrane domains (lipid "rafts") already in the ER, and a lack of raft association correlates with mistargeting of...

متن کامل

Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides.

All mature Saccharomyces cerevisiae sphingolipids comprise inositolphosphorylceramides containing C26:0 or C24:0 fatty acids and either phytosphingosine or dihydrosphingosine. Here we analysed the lipid profile of lag1Delta lac1Delta mutants lacking acyl-CoA-dependent ceramide synthesis, which require the reverse ceramidase activity of overexpressed Ydc1p for sphingolipid biosynthesis and viabi...

متن کامل

Sphingolipid signaling in yeast: potential implications for understanding disease.

Sphingolipids are essential components of membranes and important for cellular integrity. The main focus of research in the past years has been to demonstrate their role as second messengers. The yeast Saccharomyces cerevisiae is an excellent model for the study of sphingolipids, because the first steps of this metabolic pathway are highly conserved among fungal, plant and the animal kingdoms. ...

متن کامل

Kdo2-Lipid A, a TLR4-specific Agonist, Induces de Novo Sphingolipid Biosynthesis in RAW264.7 Macrophages, Which Is Essential for Induction of Autophagy*

Activation of RAW264.7 cells with a lipopolysaccharide specific for the TLR4 receptor, Kdo(2)-lipid A (KLA), causes a large increase in cellular sphingolipids, from 1.5 to 2.6 × 10(9) molecules per cell in 24 h, based on the sum of subspecies analyzed by "lipidomic" mass spectrometry. Thus, this study asked the following question. What is the cause of this increase and is there a cell function ...

متن کامل

Rescue of cell growth by sphingosine with disruption of lipid microdomain formation in Saccharomyces cerevisiae deficient in sphingolipid biosynthesis.

In the yeast Saccharomyces cerevisiae, sphingolipids are essential for cell growth. Inactivation of sphingolipid biosynthesis, such as by disrupting the serine palmitoyltransferase gene (LCB2), is lethal, but cells can be rescued by supplying an exogenous LCB (long-chain base) like PHS (phytosphingosine) or DHS (dihydrosphingosine). In the present study, supplying SPH (sphingosine), an unnatura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 84 6  شماره 

صفحات  -

تاریخ انتشار 2012